炼丹
这节对显卡的要求较高。
在法律上,不应该 无视画师约定的版权许可,采集作品数据进行训练。在道德上,不应该 用训练结果贬低原画师作品价值,俗谚有 “吃水不忘挖井人”,训练数据并不能作为你的贡献。
目前个人认为效果认为效果最好的是 DreamBooth,但是其训练时对显存要求较高(> 12GB)。
fine tune = hn/TI/DreamArtist (APT)/DB/native training etc.
fine tune directly = DB/native training
如何选择
综述。Textual Inversion 和 Hypernetwork 适用于 整体靠近
,前者教 AI 用模型中的标签组成一个 人物
,后者也是类似的。区别在于 Hypernetwork 以调节模型权重为手段,而 Textual Inversion 告诉 AI 特定标签应该如何组成。
而 DreamBooth 适用于 细节
的模仿,它的训练过程 “重新整改” 了模型,新模型之中含有了新的样本特征(加了新东西), DreamBooth 技术本身用于 “复刻” ,所以可以认识冷门元素。
至于 Aesthetic Gradients ,也就是给 AI 认识一组 优秀的数据
。结果就是这个东西会增加细节,训练很简单,但是会拖慢生成图片的速度(每次生成都要重新计算)。并不适合应用。
Tagger Relate
-
Multi-backend (WD taggers, deepdanbooru) fast automatic tagging utility https://github.com/AdjointOperator/Augmented-DDTagger
-
some helper script to tagging with DeepDanbooru and BLIP https://github.com/crosstyan/blip_helper
-
Labeling extension for Automatic1111's Web UI https://github.com/toriato/stable-diffusion-webui-wd14-tagger
-
Face Detection https://github.com/HRNet/HRNet-Facial-Landmark-Detection
-
Tag your waifu dataset with one enter https://github.com/AdjointOperator/End2End-Tagger
-
DeepDanbooru https://github.com/KichangKim/DeepDanbooru https://github.com/AUTOMATIC1111/TorchDeepDanbooru
-
clip+blip https://github.com/pharmapsychotic/clip-interrogator
-
FaceDetector https://github.com/hysts/anime-face-detector https://github.com/deepinsight/insightface
-
Search https://github.com/kitUIN/PicImageSearch
-
Remove text from AI-generated images https://github.com/iuliaturc/detextify
-
WatermarkDetection https://github.com/LAION-AI/LAION-5B-WatermarkDetection
-
sd-tagging-helper https://github.com/arenatemp/sd-tagging-helper
SCAL-SDT
How to train Stable Diffusion (SD) "efficiently" and how to use SCAL-SDT itself (WIP).
认知炼丹
如果你在 --medvram
参数下开始训练,可能会出现 RuntimeError: Expected all tensors to be on the same device
错误,无法创建训练。
这是优化机制导致的 问题,WebUi 在 这次提交 中允许了在 --medvram
下创建 embedding 的情况。请更新版本到这个版本之后。
关于 batch size
更大的 batch size 可能稍微加快训练并稍微提升训练效果,但也需要更大的显存。
Textual Inversion (TI)
从一些具有共同语义 [v] 的图片中,提取 [v] 的一个方法。提取出的 [v] 张量称之为 "Embedding"。将 Embedding 保存为文件,之后生成图片时就可以在 prompt 中以文件名引用。
特征
训练产物大小较小,webui 自带训练支持。
可以解决新出的角色画不出的问题,或者模仿特定的可以用语言精确描述的艺术风格。
因为 TI 是在 Text Encoder 的输出做处理,所以并不能让模型学习到它不知道的概念。
不同模型的 embeddings 不通用
使用
使用时,将 embedding(一个 .pt 或一个 .bin 文件)放入 webui 的 embeddings
目录并在 prompt 中写要用的 embedding 的文件名(不包括扩展名)即可,不必重启 webui。可以同时使用多个 embedding。
如果你使用 DreamArtist ,则将 *-neg.pt
一并放入 embeddings
目录,在积极和消极提示词中同时使用它们即可。
相关
相关 embeddings,里面有相关效果预览。
list of Textual Inversion embeddings for webui(SD)
Hypernetwork (HN)
一类给模型生成权重的网络,在这里是给 LDM(潜在扩散模型) 生成权重。是一个较为实验性的方法,NAI 率先探索了在 LDM 上使用。
特征
与 TI 不同,Hypernetwork 会改动 LDM 本身的权重,所以可以训练出无法用语言精确表述的细节,也更适用于画风的训练。
训练产物大小中等,webui 自带训练支持。
使用
使用时,将 Pt 放入 /models/hypernetworks
并在设置选项勾选启用它。
NAI Leaks 的 novelaileak\stableckpt\modules\modules
中有 NAI 训练的一些 Hypernetwork。
Tip
.pt
文件,一般情况下小的是 embedding 大的是 hypernetwork。
DreamBooth (DB)
直接微调 LDM 和 Text Encoder 以适应用户特定的图像生成需求的一个方法。
你能想象你自己的狗环游世界,或者你最喜欢的包在巴黎最独特的展厅里展示吗?你的鹦鹉成为一本插图故事书的主角呢?
特征
与 TI 和 HN 不同,DreamBooth 可以做到出图和训练集高度相似但是却不失泛化能力,用于训练特定具象概念(比如一个角色穿着特定衣服)效果特别好。但是不像 TI 和 HN 像完整权重的 “插件” 一样即插即用,强度也不可调。
这个模型并非为学习画风(抽象概念)而设计。但似乎可以一定程度上适应“画风”。具体效果交由读者你实验。
使用
把 DreamBooth 训练出的 .ckpt 文件放进 webui 的 models\Stable-diffusion
目录里,在 webui 的左上角切换到即可使用。
官网 https://dreambooth.github.io/
论文 https://arxiv.org/abs/2208.12242
Advanced Prompt Tuning (APT)
"Can super dramatically improve the image quality and diversity"
DreamArtist-sd-webui-extension
添加对否定词的即时嵌入学习,以显着提高生成图像的质量。 高质量的概念可以从单个图像中学习。
添加重建损失以提高生成图像的细节质量和丰富度。
添加通过人工注释训练的鉴别器(使用 convnext 实现)允许嵌入基于模型进行学习。
使用方法与 Textual Inversion
相同。
Aesthetic Gradients
微调 CLIP 以适应某个特定生成需求的方法,可以和 TI 一样起到缩短 prompt 的作用。可能略微提升出图的质量。
这项技术通过在生成时计算每个图片的权重,提供了一个 我不说你应该懂往哪里训练
的功能。使 AI 更聪明地调整并增加细节。
此项功能来自这个 存储库,在 这次提交 中,此功能被剥离为插件。
特征
通过这项技术,你不需要通过 过多提示词 来提升图片的质量,而是保持作品原始的总体构图,并提高美观度。在少量提示词情况下也可以生成效果不错的作品。
据暗影·夜光所言 5,添加 25% 以内的权重,就可以稍微改善画面的美观度而不影响内容。美学 与 Hypernetworks 让 Ai 作品更接近原画师风格,但是美学权重本身效果并不好。需要配合 Hypernetworks 超网络。
训练这项模型很快,但是在每一次生产时都会重新为图片计算一次,所以出图很慢。
注意:当种子改变时,训练结果也会改变。
使用
你可以使用下面的 Git 命令来安装这个东西。
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients extensions/aesthetic-gradients
安装后,在 webui 的 extensions
文件夹下面创建 aesthetic-gradients
文件夹。
使用时,把 Pt 放在 models/aesthetic_embeddings/
然后重启程序,你就可以在 Img2Img 中使用此项功能。
附录
创建日期: 2022年11月2日 03:59:46